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Abstract. The problem of Aharonov-Bohm (aB) scattering on two parallel flux lines of
arbitrary magnitude is solved exactly; the expression for scattering cross-section in the
region of geometric shadow is derived. It is shown that in the particular case of two
antiparallel lines of the same magnetic flux, though the return flux does not exist, the A
scattering still exists.

1. Introduction

We have solved exactly the AB scattering [1] on two parallel fiux lines and flux tubes of
the same magnitude [2-4]. Now we shall further generalize our method to solve
exactly the B scattering on two flux lines of arbitrary magnitude, the fluxes are 8,d
and §8,®, respectively. In the particular case of two antiparallel lines of the same
magnitude (8, = —B,= 1), the return Hux [5] does not exist, but we shall show that A
scattering still occurs in this case by the calculation of scattering cross-section. This
result is very important in understanding the cause of AB scattering.

2. Vector potential

Let QXY be the coordinate plane perpendicular to two flux lines, and the coordinates
of the two flux lines be (4,0} and (—a,0), respectively. We choose two polar
coordinates (g, ¢,) and (p.. ¢;) with these two points as poles. In the Coulomb
gauge, the vector potential is
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where e, and e, are the unit vectors in the transverse direction of the two polar
coordinates. In terms of elliptical coordinates (u, 8)
x=acoshucos 8 y=asinkt % sin @ 2

(1) becomes
D (B1—pB,)coshusin 8+ (B, +5,)sinBcos 6
~2mh| cosh’u ~ cos*d
(B, — B2) sinh g cos 8+ (B, + ;) sinh g cosh u
+ 7 7 “
cash®u — cos*0
(%1 =[cosh’u — cos?6]"?). (3)
Now we simplify the form of vector potential by a gauge function A. Let the
coefficient of e, of the new vector potential equal zero, we obtain

€,

nhu (B +8)
A {(ﬁl ﬁ!) tan” iH g + 2
. _,c0shucos@~1 coshucosf+1 5
sin coshu—cos@ i coshy+cosd 8(6) ()
where g(0) is a certain function of 8. The new vector potential is
K=2owe g2, ©
wh ¢ dé
Equation (5) must satisfy the physical demand that
$ atrpe  § aay-po ©
[} Cz
where C, and C, are two closed paths around each flux. From (6) we get
(Bi—Ba) = (Br+82) (%
0= L3S a-ana s PR () | m
Substituting (7) into (5) we obtain
. (8- B m (B1+82)
A :frh( 2 2COSB+H2_]%' ®)
3. Schridinger equation
The Schrodinger equation is
e \2
V——A' f o Lt
(v-528 ) = ©
where k=(2mE/H*)"* is the wavenumber. By writing
b4
¥’ = M(1)@(0) = M()Q(6) exp{ —ia[(ﬁi ~B)55in 6+ (8, +ﬁz)9]} (10)
we find
2
32 =5+ (A—2gcos 21)M =0

2

—a-é%+(ﬂ—2qcos 2000=0 (11)
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where a= —e®/2mhc is the quantum number of flux, v=ix, g=a%%4, A+2q is the
constant introduced in the seperation of variables. Equations (11) are recognized as
the Mathieu equations. Using the general solution of (11) and the relations between
wavefur ction 1 (corresponding to A) and ' (corresponding to A") we get

. _Isinhp i1
y=exp|ia(f-p){ tan" ——=—3
BB _Icosh;,ccosf}-l_]_ ) _lcoshycose+1
tia 2 \° cosh ¢ —cos 8 s coshyu +cos @ *

% > WAL Cenlst, @)+ AFeyap, @)lcen(8, q)

pr
+[B,Cenyur(tt, q) + B, Feyp,. (#, g)lces,+ (8, )
+{CoSezmi(#, @) + C, Geyrasts Q)Js20.1(0: q)
+[D,Ses (@, )+ D, Geya i n(it, @))5es,.2(0, 4)}. (12)

In order to satisfy the initial condition that the current density

BtV —yVyY) e
i= T ~meAv'Y (13)

should be constant and in the x direction, the incident wave must be chosen as
Yine=expf{ — 2ia[ g(6) + go] — ikx}. (14)

For simplicity we choose the arbitrary constant g, as

8= (ﬂ—;ﬂhﬁlzﬁz) =36 (15)

hence (14) becomes
Wi = exp{ —i(B,+ B)ald —i(B— B)a gsin 8 +ikpsin(6+ 1:)} (16)

where 7 is the angle between the wavevector k of the incident wave and the y axis.
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Considering the expression (16} of the incident wave, we rewrite (12} as

peesp| i sin0} {3 3 [CauCat. 0

m=0

+ Coyy Fep, ) + Sty Sed #t, ) + S5, Geyi( 2, g))ee, (0, 2)

+ 2 2 [CiurCer(it, §) + ChgFeyi(#t, )+ Sy Sei(, )

m=1

+ 85, Geyi(ut, 9))se. (6, ¢)

oo

=exp{ ~i(fi~B)asin e} : {2 > [(Cot ciug + O@H)Cenu, 9)

m=0 [
+(Coy+ E5,q+ O(g D) Feyipt, @)+ (S5u+ siug + O(g®))Seu, q)
+ (Sta+5g + O(g))Gey (1, Pleen(6, 9)

+3°S (Cout ciug + 0(g?))Cerlp, 9)
= {

+(Cout Cug + O(g ) Fey(u, q)
+ (St s5ug + O(g"N)Se 1, )

+ ($5u+S5ug + O(g7))Geyi(#, 9)lsen(0, q)} (17)

where the coefficients C%;, €<y, S5, $% - - . are functions of a only. Using the same
method as [1], we can find these coefficients under the conditions #— % and g—0.
Let

0= exp{ ~ia(8,— B2} g sing + im¢} (18)
we obtain

A={m+ B+ el (19)
and hence

R"+%R’+{k2—{m+(ﬁ;:-ﬁ2)a] }R=O (20)

where R(p)=M(u), (p,¢) are polar coordinates with the origin of the rectangular
coordinates as pole. Through quite a tedious calculation as that given in [1], we find

6o = 21,(3_2'6"‘1) Cho =2L( -1, (‘5_"'031'*'#32)““)
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;,cos(anmé) cos & I=m=2n+#0
1
¢ =4 2i
Coi ;—,sin[(?,n-{—l)r—é]cosd I=m=2n+1
i
L0 ‘ I#m
Foye
i
!—,—,sin(an—é) sin @ I=m=2n+#0
i
=12 .
:p—,cos[(Zn+1)r—6}sm6 I=m=2n+1
!
0 l#m
(2i
?cos[(2n+1)r—d]cosé I=m=2n+1
I

[ J— —_—

=q—2
m —sinl(@n+2)r—dlcosd  I=m=2n+2
I

0 I#m

?sin{(2n+1)1:—6]sin6 I=m=2n+1
!

L= 2]
m — cos[(2n+ 1)z~ 8] sind I=m=2n+2
!
LD I#+m
sr=854=Ciy=Ciy=0 (21)

the constant multipliers p/ and s are given in {6, pp. 368-369].

We comment here on criticism [7] of this method of calculation. First, (8) is
calculated from two magnetic flux lines, it is singular only at two foci F, and F;, not at
other points on the line F,F5, i.e. there is no singularity for A’ on the line F| F; except
at the two ends. Second, the singularity of elliptical coordinates consists only in the
multivaluedness of @ on the line F|F,, but this singularity can be removed by
recognizing F, F; as a branch line. Thirdly, there is no singularity for our solution (12)
on the line F/F;; in the appendix we show explicitly that this solution obeys
Y(u=0,8)=yw(u=0, —6). Finally, we do not use any nearby boundary conditions to
determine the coefficients in (17), we use only the faraway boundary conditions.
Therefore our results (17) and (21) are related to the scattering of electrons by two
magnetic flux lines, not by a magnetic flux which is spread continuously along the line
F/F, [7]. and our method of calculation is correct.

4. Scattering cross-section

In the asymptotic region ¢ =6
’ ikp

. . Jz r r .
zp=exp{ —i(B1 + B2yl — (B _ﬁZ)af sin 8+ ikp sin(8 + r)} + f(8) \/E‘ (22)
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Combining (17), (21) and (22), taking advantage of the orthogonality relations of
Mathieu functions, we can find the expression for f(#) as an expansion for the
Mathieu functions. We find that the results are easily obtained from [1] by changing
2a to (8, + B2)a and by increasing a phase factor exp{ —i(8, — 8,)a(z/2) sin 6}.

Now we derive an expression for f(6) in the region of the geometric shadow of the
strings where g is very large but not yet infinite. When ga>>1, and —~2/2<6<a/2 we
have

F0)=exp{ ~i(p=a sin0) - 55 +hi g+ Olg e, 0
+ Y (Hiy+ kg + O(g))cex(d, q)

+ > (H3+ hhg + O(g))ees. (6, ) (23)

n=0

+ S (Hi+ B+ 0g))ses (6, 4)

a=0

+ >, (Hi +hiig+ O(g))sess o6, q)]

n=0¢

2 2
Hi= \/;Ie-(mas)-z:é Hi=(-1y \/; e~ cos(2nr — 26)

H;,,=i(—-1)"\[;_[2-3“’“sin[(2n+1)r—26} 24)
2

Hi=i(~ 1)”\/;13"""‘ cos[(2n+ 1) —26]
2

Hi=(— 1)"\/;5""" sin[(2n +2)r—24].

When a—0, we must have f(8)=0, by the orthogonality of circular functions,
equation (59) and the corrected version of equation (60) of [1] ((E2) of [2] should
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=2id

change to —e™*° cos(20) in this case), we get

ht = ~ixi4 .71’+ bl Bt - e”™ sint
°_V2n(2 FrsmT " T Nom dn =1

e™ ™ sint
Vix @n+17-1 )
e™ ™ (2n+1)cost . €™ (2n+2)cost

fin = V @n+1P-1 k“"=_02n (2n+2y°—1"

Substituting (24) (25) into (23) and using the approx1mate formula 6]
om- 112

( ‘?)~ (nquZ)[.fzcosm-l-le

. 6 N\ e+t , 8 m\ Jm+1
x{ez‘fl'2s"‘9[cos(2+4)] te” 2"”““”[3111(2+4)] } (26)

in the case r=—a/2 and §=(, we get

-\/56-:1.'4 q = pé"'*'] pé‘"
f=—— Zg-;qm cosZé{p0+22(p2n+i Pz«:)+ cos 25 %((Zn+1)2—1m4n2"1)

ce,,

n=0 =l
+ip; tan 26} 2N
hence
, cos’26 P+ Px N\
o=l =g {["’”22 Plner=Ph) + cosZéz((2n+ 1)2—1'4n2—1)]
+ py* tan? 26} . (28)

In the particular case of two antiparallel lines of flux, ;= —8,=1, (28) reduces to

1 r - ¥ ’ ~ pgﬂ*l Pén z
0":2”2 i P0+2E(P"m+l"P2n)+qz 2n+1)2—1“4n2—1 . (29)
q n=0 r=0

Obviously, the scattering cross-section does not equal zero in this case. Hence we
obtain the important conclusion: even in the case that the return flux does not exist,
aB scattering still exists.
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Appendix

Here we give the proof of the result:

P(u=0,0)=y(u=0, -0). (A1)
Using the following formulae [6, pp. 161-162]:

S€5.41(712, @) Z
Sezsi(1t, @) =g tanhp D, (—1)(2r= DB Ty (2K cosh )

r=0

(B2ns1)

seya(7/2, q)
Geys (it @) = — g tanhp 2 (= 1Y (2r+ 1B Yy, (2K cosh )

(Barsd) (A.2)
R A2, q) .
Seani(# @) =—agpen - tenhu 2 (= 1y(2r + 2)BEIE" Tyuya(2k cosh )
r=0
(bana2)
—5e5,4272, q) s
Geyaun st §) = —japgmr — tanhu 2 (= 1Y(@r +2)BE5? Yyp.p(2k cosh 1)
r=0
(b2n+2)
and the result tanh [,.,=0, we get
Se,(0,9)=0
= -+ . .
Gey, (0, 4)=0 m=2n+1,2n+2 (A.3)

Using the following formulae [6, p. 21]:

cey(8, q) = 2 AP cos 2r0 (a2,)
r=0 (A.4)
Corn(6,0)= D AB cos G+ )8 ()
r=0
and the relation cos( — ¢) = cos ¢, we obtain
ce(— 8, q)=ce,(8,q) m=2n,2n+1. (A.5)

Letting =0 in (12), using sinh p|,.,=0 and cosh u|,.o=1, and applying (A.3), we
get

p(u=0, @)=exp(—iaf, 7) 2 {[A.Cez (0. g) + A, Feyr(0, g)]cex(8, 9)

n=0

+[B,Cezns1(0, g) + B, Feya. 10, g))cen+1(6, g)}- (A.6) .

Letting 6 — —6 in (A.6) and applying (A.5), we easily obtain the required result
(A.1).
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